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I M P U L S E - F U N C T I O N  M E T H O D  F O R  H E A T - T R A N S F E R  

D Y N A M I C S  I N  A C H A N N E L  

B .  P .  K o r o l ' k o v  a n d  E .  A .  T s t r o v  UDC 662.987:536.247 

A method of s o h i n g  the boundary p rob lem for  h e a t - t r a n s f e r  dynamics  in a channel is  p r o -  
posed;  the p rob lem is reduced to in tegra l  equations of Vo l t e r r a  type.  

Nonsteady one-d imens iona l  motion of heat c a r r i e r  in a heated channel is  cons idered .  The p rob lem is 
to de t e rmine  the change in the p a r a m e t e r s  ( t empera tu re ,  flow r a t e ,  p r e s s u r e )  due to per tu rba t ion  of the ex-  
t e rna l  condit ions.  The change in the flow ra te  and p r e s s u r e  at the channel inlet  a r e  re la ted  by the boundary 
conditions for  the equation of motion.  In mos t  of the k n o ~  works ,  the conditions at the r ight -hand boundary 
were  e i the r  c o m p l e t e l y ' d i s r e g a r d e d  [1], or  e l se  were  a s sumed  to affect  only the p r e s s u r e  deviat ion at the 
inlet  and the flow ra te  was a s sumed  to be given [2]. I f  conditions a r e  specif ied at both boundar ies ,  it is  n ece s -  
s a r y  to soh,  e a boundary p rob lem for  the s y s t e m  of equations desc r ib ing  the heat t r a n s f e r  and hydrodynamics .  
A m o r e  comple te  formulat ion of the p rob lem is  poss ib le  if  n u m e r i c a l  methods a r e  used for  the d i rec t  i n t eg r a -  
tion of the d i f fe ren t ia l  equations,  but to date this approach  has been used mainly  in the context of sc ient i f ic  r e -  
s e a r c h  because  the computat ional  a lgor i thms  a r e  too complex for  use  in engineer ing p rac t i ce .  

The p r e sen t  work d e s c r i b e s  a method by which, in the l inear  case ,  the boundary p rob lem can be reduced 
to two in tegra l  Vo l t e r r a  equations of the second kind of convolution type;  analyt ic  express ions  a r e  obtained for  
the impulse  function re la t ing the changes in input and output p a r a m e t e r s .  Computer  solution of the in tegra l  
equations is  s t r a igh t fo rward .  

Taking the equations of s ta t ics  into account [3], a l inear ized  s y s t e m  of conserva t ion  equations may be 
wri t ten for  the p a r a m e t e r  deviat ions:  

.On D__ + f OA,.o_ = O, (~ ) 
az O~ 

Do TOAi + /P0 OAio~ r ozOi~ AD =: Aah (O 0 - -  t0) -i- %h(A0 - -  At), (2) 

a/~o (3) hq - -  gw C w .... Aah (0 o - -  to) -! %h (h0 - -  At), 
O~ 

hp~---Ap = 2_6p0 AD-- 6P0 Ap, 
Do P0 
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Fig. 1. Structural  d iagram of calculation. 

Ap = 0p At-- 0p Ap, Ai-- Oi At@ Oi 

Here the hea t - t r ans fe r  coefficient is assumed to be a function only of the flow ra te ,  and the equation of 
motion is considered for  res i s tance  concentrated at a point. The heat flow is independent of thc space 
coordinate Aq = Aq(T), and the initial value of the deviations is zero.  

The choice of boundary conditions is based on the assumption that the medium leaves the source  at 
constant p r e s s u r e  and passes  through a controlled res i s tance  to the input of a channel; the p res su re  at the 
channel output is independent of the p rocesses  that occur  in the channel. * Thus,  the changes in flow rate 
and p r e s s u r e  at the input a re  related by the con t ro l led- res i s tance  equation 

D~ At (~) _._ 2D0~ AD, (T) = O. (5) 

The deviations At 1, z~ ,  Aq, and Ap may vary  a rb i t ra r i ly  with t ime.  

Certain of the relat ions in Eqs.  (1)-(5) are  weak. Experimental  data and calculations show that in 
the case  of slightly compress ib le  flow the effect of density variat ions on the tempera ture  may be neglected 
in Eq. (2) [so that AD(z, T) = AD,(r)]; the t empera tu re  deviation may then be found without considering the 
continuity equation, but taking into account the f low-ra te  variat ion in the input c ross  section.  Slight flow- 
ra te  osci l lat ions ar is ing as a resul t  of flow compress ib i l i ty  may be determined subsequently f rom Eq. (1) 
using the resu l t s  obtained for  the deviation At(z, T). Because the thermophysica l  flow propert ies  depend 
very  little on the p r e s s u r e  var ia t ion in the t rans ien t  p roces s ,  the equation of motion need only be consid-  
ered when the p r e s s u r e  deviations at the channel boundaries a re  to be determined.  Since the equation of 
motion fo rms  an internal  feedback in the channel,  it may be broken, in complete accordance  with the pr in-  
ciples of control  theory ,  by detaching Eq. (4) f rom the sys tem.  Subsequently, by finding" Zhe dynamic cha r -  
ac te r i s t i c s  of this broken c i rcui t ,  this feedback connection may be res to red .  

In accordance  with the discuss ion above, the sys tem in equations (1)-(5) is d lv ided in to th reepar t s ,  c o m -  
bined in the s t ruc tu ra l  d iagram of the calculation (Fig. 1). In the d iagram,  the propagation of perturbat ions 
f rom input to output is expressed  by an impulse t rans ient  function using a Duhamel integral  (convolution). 
The boundary conditions on Eq. (1)-(3) required to determine the impulse functions relating the t empera tu re  
per turbat ions  at the input to the t empera tu re  and f low-ra te  variat ions at an a rb i t r a ry  c ross  section [Ett 1 (t) 
and EDtl(T)] a re  written in the form 

At1(~) - 6 (~), AZ)I (~)-- Ap, (T) = Aq (T) = 0, 

where 5(T) is  a Dirac delta function. The impulse functions for  the other per turbat ions (AD I, Ap 1, Aq) a re  
found analogously.  

* In this example,  the s imples t  possible specif icat ion of the boundary conditions is adopted; this is not a 
l imitation of the method. 
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Fig.  2. Normal ized  s tar tup  curves  for  flow ra t e  hDt 1 = AD/xAtl ,  x =--ff)o/Po)(Op/Ot): 1) at in -  
put; 2) at output; 3) at output without taking equation of motion into account;  D, kg / sec ;  t ,  ~ 
kg/m3; ~', see;  Tw, see .  

Fig.  3. Normal ized  s tar tup curves  for  t e m p e r a t u r e  htt i = &t/Atl with (1) and without (2) taking 
equation of motion into account; a) water;  b) s t eam.  

The Solution employs in tegral  Laplace t r a n s f o r m s .  The cor respondence  pr inciple  is used in obtain- 
ing the impulse  t rans ien t  function [3, 4]. F o r  example ,  in the case of a t e m p e r a t u r e  per turba t ion  

Ett, = 
Twn 

V2,0 + 6(~-- vTo)exp(--~), 

EDt, = • [ f (~) - -  Eu, - -  ~ (exp (- -  SoX) ~ V1,~) ] , 

where V2, 0 and V1, c a re  special  functions of Besse l  type [4]. By means of the impulse  functions i t  is pos-  
sible to find the t e m p e r a t u r e  and f low-ra te  dis tr ibut ions for  input per turbat ions  Aj (T) of a r b i t r a r y  fo rm 

ht(~) = ~ ; E t j ( z - -  x)A](x) dx, (6) 
1=1 0 

' j  
AD (z) = X ED] (~ - -  x) hi (x) dx, ] - -  t~, D v Px, q" (7) 

/~ I  0 

It is n e c e s s a r y  to add to Eqs.  (6) and (7) the equation of motion in the channel,  taking into account the 
equation of s ta te  

( 6 p o O p )  6P0 0P 26po 1 ~ Ap, (~) = Ap (T) At (~) + AD (~), (8)  
Po Op Po Ot 

and Eq. (5). Eliminating &pj(T) and ADI(T ) f r om  these  equations leads to two Vol te r ra  in tegra l  equations 
of the second kind for  &t(r) and AD(T): 

Here  

At ('r) = F t ('0 + J~ [B, At (x) + Bo AD (x)] Nt ('~ - -  x) dx, 
0 

T 

AD (x) = FD ('0 + J' [Bt At (x) + BD AD (x)] ND ('~ - -  x)dx. 
0 

N, ('r - -  x) -- Eto, ('r - -  x) Bp + Etp, ('r ~ x); 

N~ (~ - -  x) = Evm (~ - -  x) Bp + EDp. (~ - -  x) 

a r e  the in tegra l  kerne ls ;  also 
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.g 

F~ (x) = .I IEtt, (x - -  x) At 1 (x) -+- Etq (~: - -  x) Aq (x) -i- Nt (T - -  x) Ap (x)l dx; 
0 

FD (T) = .[ [EDq (T - -  X) At~ (x) + EDq (T - -  x) Aq (x) § ND Or - -  X) Ap (x)l dx 
0 

a r e  inhomogeneous t e r m s ;  and 

B t - 
1 6P0 O p .  BD- -  26p~ B p -  Pl 
C Po Ot ' -- D o ~ '  2~D o 

C - 1 -- 6p~ Op 
p Op 

a r e  coeff ic ients ,  F o r  s impl i c i ty ,  let  A~ = 0. 

Relat ions of input--output type a r e  ve ry  convenient  for  the construct ion of s t r uc tu r a l  d i a g r a m s  for  
the calculat ion of var ious  technologica l  p r o c e s s e s .  By means  of a s t ruc tu ra l  d i a g r a m ,  a complex p r o c e s s  
may  be r e p r e s e n t e d  as  a combinat ion of e l e m e n t a r y  p r o c e s s e s ,  readi ly  suscept ib le  to theore t i ca l  ana lys i s .  
This  s ignif icant ly  i n c r e a s e s  the eff ic iency of compu te r  use ,  because  of the convenient organizat ion of the 
in format ion  flow. 

Curves  of f low- ra te  deviat ion for  a s tep  change in water  t e m p e r a t u r e  at the input a r e  shown in Fig. 2; 
a l so ,  for  compar i son ,  t heo re t i ca l  cu rves  calculated without taking into account  the conditions on the r igh t -  
hand boundary (Cauchy problem} a r e  shown. The a r e a  between curves  1 and 2 c h a r a c t e r i z e s  the change in 
m a s s  filling of the channel due to the a r r i v a l  of hot ter  water .  Since • is  sma l l ,  the absolute value of the 
deviat ion is  a l so  s m a l l ,  but the change in the final level  of the flow ra te  affects  the t e m p e r a t u r e  deviation 
both in the channel  under  cons idera t ion  (Fig. 3) and in those  following it .  In a complex  hea t -exchanger  
s y s t e m ,  such as a power  s t e a m  g e n e r a t o r ,  sma l l  changes in flow ra te  may  have a cumulat ive  effect  that is 
s ignif icant  in p r a c t i c a l  ca lcula t ions .  

I f  the ex te rna l  pe r tu rba t ion  takes  up a s teady value with t ime ,  in tegra t ion of Eqs .  (6) and (7) between 
infinite l imi t s  leads to  a lgebra ic  equations in which the deviat ions At and AD a re  re la ted  to the p e r t u r b a -  
t ions by means  of an ampl i f ica t ion  fac to r .  Joint  solution of these  equations and Eqs .  (5) and (8) leads to an 
exp re s s ion  for  finite s teady t e m p e r a t u r e  and f l ow- ra t e  devia t ions .  Thus,  if  the input t e m p e r a t u r e  of the 
flow changes by At1, the t e m p e r a t u r e  deviat ion at the output c r o s s  sect ion may be de te rmined  f rom the 
exp re s s ion  

h't =: Aq  - -  AAt,  _ _  , 
26po/D o - -  C/B v - -  A 

where  

A 11~ - -  to 6po Op 

Do Po Ot 

The f i r s t  t e r m  in this e x p r e s s i o n  is  comple te ly  de te rmined  by the magnitude of the applied p e r t u r b a -  
tion; the second c h a r a c t e r i z e s  the extent  to which the t r a n s m i s s i o n  of the per tu rba t ion  through the channel 
is  undetected.  Steady deviat ions  of the p a r a m e t e r s  may be de te rmined  analogously for  al l  poss ib le  p e r t u r -  
ba t ions .  

N O T A T I O N  

D, flow ra te ;  i ,  enthalpy; t ,  flow t e m p e r a t u r e ;  Pi  densi ty;  f ,  c r o s s  sect ion;  a ,  h e a t - t r a n s f e r  coeff icient ;  
0, wall  t e m p e r a t u r e ;  q, g ,  h, heat flow, m a s s ,  and in te rna l  su r face  pe r  unit length; c ,  speci f ic  heat; p, 
p r e s s u r e ;  6p, p r e s s u r e  d i f ference;  ~, reduced  c o n t r o l l e d - r e s i s t a n c e  coefficient;  z ,  t ime;  z,  coordinate;  
A, deviat ion.  Indices:  0, init ial ;  1, output; w, wall .  
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A new method of thermal  test ing and process ing  the resul t ing data is developed on the basis 
of Tikhonov's  regular izat ion method. Nonsteady heat t r ans f e r  is investigated on an elongated 
model. 

A new method of t reat ing the resul ts  of thermal  tes ts  in an aerodynamic  tube has been developed r e -  
cently [2, 3] based on A. N. Tikhonov's  regular izat ion technique for  the solution of inverse  heat-conduction 
problems.  This method can be used for  hea t - t r ans fe r  investigations in significantly nonsteady conditions and 
hence, in contras t  to existing the rmal - t es t ing  methods using regular  heating conditions, it is unnecessary  to 
wait some t ime af ter  tube s tar tup so as to ensure  that the model is introduced into steady flow. The model 
may be introduced into the working part  of the tube ea r l i e r ,  and flow with a uniform field over  pract ical ly  the 
whole of the charac te r i s t i c  rhomb of the nozzle may be used. As a resul t ,  a comparat ively smal l  working 
par t  of the tube may provide a large value of Re, calculated over  the length of the model ,  corresponding to 
t ransient  and turbulent s tates of the boundary layer .  

In the present  work, hea t - t r ans fe r  experiments  were car r ied  out in a supersonic  (M = 5.0) aerodynamic 
tube with an ax i symmet r ic  nozzle of d iameter  0.29 m. The model (Fig. 1) was in the fo rm of a tapering hollow 
cylinder (length 1.15 m; d iameter  0.04 m; wall thickness 0.002 m) of 1Khl8N9T stainless  steel .  To allow heat-  
flux measurements  at two c ross  sections of the model (I, x = 0.3 m f rom the nozzle;  II,  x = 1 m f rom the 
nozzle) ,  Chromel--Alumel  thermocouples  of thickness 0.0002 m were welded to the inside of the model wall. 
The model was attached to a fixed mount in the tube. The tes ts  were carr ied  out for  unsteady conditions of 
tube operat ion,  associa ted with tube s tar tup and with t ransient  p rocesses  due to t empera tu re  variat ions of the 
incoming flow (between 300 and 500~ The p re s su re  in the tube antechamber  was held constant (Pea = 8. l0 s 
N/m 2) by means of an automatic choke. The gas- f low stagnation tempera ture  was recorded  using a t h e r m o -  
couple assembly  in the tube antechamber .  The thermal  inertia of the thermocouple  assembly  was determined 
experimental ly and taken into account in the analysis  of the tes t  resul ts  by an appropria te  cor rec t ion  in the 
t e s t - r e s u l t  p rocess ing  program.  

The tes t  resul ts  were p rocessed  by numer ica l  methods using an algori thm for  the solution of the one- 
dimensional l inear  inverse  heat-conduction problem.  In this case ,  the unsteady heat flux qff) at the surface 
of the model is determined by an integral  Vol te r ra  equation of the f i rs t  kind: 

h (T) = ~ q r K (T, ~) d~, 
0 

where f5  (T) is a known function of the initial delta. For  a plane plate with a heat- insulated inner  wall and 
constant initial t empera tu re ,  

Transla ted f rom Inzhenerno-Fiz icheski l  Zhurnal,  Vol. 33, No. 69 pp. 988-992, December ,  1977. Orig-  
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