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IMPULSE-FUNCTION METHOD FOR HEAT-TRANSFER
DYNAMICS IN A CHANNEL

B. P. Korol'kov and £. A. Tairov UDC 662,987:536.247

A method of solving the boundary problem for heat-transfer dynamics in a channel is pro-
posed; the problem is reduced to integral equations of Volterra type.

Nonsteady one-dimensional motion of heat carrier in a heated channel is considered. The problem is
to determine the change in the parameters (temperature, flow rate, pressure) due to perturbation of the ex-
ternal conditions. The change in the flow rate and pressure at the channel inlet are related by the boundary
conditions for the equation of motion. In most of the known works, the conditions at the right-hand boundary
were either completely 'disregarded [1], or else were assumed to affect only the pressure deviation at the
inlet and the flow rate was assumed to be given [2]. If conditions are specified at both boundaries, it is neces-
sary to solve a boundary problem for the system of equations describing the heat transfer and hydrodynamics.
A more complete formulation of the problem is possible if numerical methods are used for the direct integra-
tion of the differential equations, but to date this approach has been used mainly in the context of scientific re~
search because the computational algorithms are too complex for use in engineering practice.

The present work describes a method by which, in the linear case, the boundary problem can be reduced
to two integral Volterra equations of the second kind of convolution type; analytic expressions are obtained for

the impulse function relating the changes in input and output parameters. Computer solution of the integral
equations is straightforward.

Taking the equations of statics into account (3], a linearized system of conservation equations may be
written for the parameter deviations:
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Here the heat-transfer coefficient is assumed to be a function only of the flow rate, and the cquation of
motion is considered for resistance concentrated at a point. The heat flow is independent of the space
coordinate Aq = Aq(r), and the initial value of the deviations is zero.

The choice of boundary conditions is based on the assumption that the medium leaves the source at
constant pressure and passes through a controlled resistance to the input of a channel; the pressure at the
channel output is independent of the processes that occur in the channel.* Thus, the changes in flow rate
and pressure at the input are related by the controlled-resistance equation

2Dt AD, (x)— 0. 5)
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Apy () - —pl—o Af(r) - o,

The deviations At,, AZ, Aq, and Ap may vary arbitrarily with time,

Certain of the relations in Egs. (1)-(5) are weak. Experimental data and calculations show that in
the case of slightly compressible flow the effect of density variations on the temperature may be neglected
in Eq. (2) [so that AD(z, 7) = AD,(7)]; the temperature deviation may then be found without considering the
continuity equation, but taking into account the flow-rate variation in the input cross section. Slight flow-
rate oscillations arising as a result of flow compressibility may be determined subsequently from Eq. (1)
using the results obtained for the deviation At(z, 7). Because the thermophysical flow properties depend
very little on the pressure variation in the transient process, the equation of motion need only be consid-
ered when the pressure deviations at the channel boundaries are to be determined, Since the equation of
motion forms an internal feedback in the channel, it may be broken, in complete accordance with the prin-
ciples of control theory, by detaching Eq. (4) from the system. Subsequently, by finding the dynamic char-
acteristics of this broken circuit, this feedback connection may be restored.

In accordance with the discussion above, the system in equations (1)-(5) is dividedintothreeparts, com-
bined in the structural diagram of the calculation (Fig. 1). Inthe diagram, the propagation of perturbations
from input to output is expressed by an impulse transient function using a Duhamel integral (convolution).
The boundary conditions on Eq. (1)-(3) required to determine the impulse functions relating the temperature
perturbations at the input to the temperature and flow-rate variations at an arbitrary cross section [Ett1 t)
and EDtl(T)] are written in the form

At (1) = 8(v), AD (1) = Ap;(v) = Ag(r) =0,

where 6(7) is a Dirac delta function. The impulse functions for the other perturbations (AD;, Apy, Ag) are
found analogously.

* In this example, the simplest possible specification of the boundary conditions is adopted; this is not a
limitation of the method.
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Fig. 2. Normalized startup curves for flow rate hpt = = AD/xAt;, n=—{Dy/p,)dp/t): 1) at in-
put; 2) at output; 3) at output without taking equation of motion into account; D, kg/sec; t, °C;p,
kg/m?; 1, sec; Ty, sec.

Fig. 3. Normalized startup curves for temperature httl = At/At1 with (1) and without (2) taking
equation of motion into account; a) water; b) steam.

The solution employs integral Laplace transforms.
ing the impulse transient function [3, 4].

The correspondence principle is used in obtain-
For example, in the case of a temperature perturbation
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where V, ; and V1,c are special functions of Bessel type [4]. By means of the impulse functions it is pos-
sible to find the temperature and flow-rate distributions for input perturbations Aj(r) of arbitrary form

4
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and Eq. (5). Eliminating Ap,(r) and AD,(r) from these equations leads to two Volterra integral equations
of the second kind for At(r) and AD(r):

f [B; At (x) + Bp AD (x)] N, (t — x) dx,

0

At (1) = Fy(0) +

AD (x) = Fp (x) + _s‘ [B; At (x) + Bp AD (x)] Np (v — x) dx.
0
Here
Ny(v —x) = Eup, (v — %) Bp + Eip, (v x);
Np (v — x) = Epp, (v — %) By + Epp, (t — )

are the integral kernels; also

(6) and (7) the equation of motion in the channel, taking into account the
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b

are inhomogeneous terms; and

are coefficients, For simplicity, let Az = 0.

Relations of input—output type are very convenient for the construction of structural diagrams for
the calculation of various technological processes. By means of a structural diagram, a complex process
may be represented as a combination of elementary processes, readily susceptible to theoretical analysis.
This significantly increases the efficiency of computer use, because of the convenient organization of the
information flow.

Curves of flow-rate deviation for a step change in water temperature at the input are shown in Fig. 2;
also, for comparison, theoretical curves calculated without taking into account the conditions on the right-
hand boundary (Cauchy problem) are shown. The area between curves 1 and 2 characterizes the change in
mass filling of the channel due to the arrival of hotter water. Since n is small, the absolute value of the
deviation is also small, but the change in the final level of the flow rate affects the temperature deviation
both in the channel under consideration (Fig. 3) and in those following it. In a complex heat-exchanger
system, such as a power steam generator, small changes in flow rate may have a cumulative effect that is
significant in practical calculations.

If the external perturbation takes up a steady value with time, integration of Eqs. (6) and (7) between
infinite limits leads to algebraic equations in which the deviations At and AD are related to the perturba-
tions by means of an amplification factor. Joint solution of these equations and Egs. (5) and (8) leads to an
expression for finite steady temperature and flow-rate deviations. Thus, if the input temperature of the
flow changes by At;, the temperature deviation at the output cross section may be determined from the
expression :

AA¢,

At = At, —
' 28piD,— C/B, — A

where

A - to—1 Op _‘.39_,
D, o, Ot

The first term in this expression is completely determined by the magnitude of the applied perturba~
tion; the second characterizes the extent to which the transmission of the perturbation through the channel
is undetected. Steady deviations of the parameters may be determined analogously for all possible pertur-

bations.

NOTATION

D, flow rate; i, enthalpy; t, flow temperature; p, density; f, cross section; o, heat-transfer coefficient;
8, wall temperature; q, g, h, heat flow, mass, and internal surface per unit length; c, specific heat; p,
pressure; 6p, pressure difference; ¢, reduced controlled-resistance coefficient; 7, time; z, coordinate;

A, deviation. Indices: 0, initial; 1, output; w, wall.
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NEW METHOD FOR NONSTEADY-HEAT-TRANSFER
INVESTIGATIONS IN A THERMAL AERODYNAMIC TUBE

O. M. Alifanov, N, I. Batura, UDC 533.6.071.08:533.6.071.6
A. M. Bespalov, M. I. Gorshkov,
N. A. Kuz'min, and A. I. Maiorov

A new method of thermal testing and processing the resulting data is developed on the basis
of Tikhonov's regularization method. Nonsteady heat transfer is investigated on an elongated
model.

A new method of treating the results of thermal tests in an aerodynamic tube has been developed re-
cently [2, 3] based on A. N. Tikhonov's regularization technique for the solution of inverse heat-conduction
problems. This method can be used for heat-transfer investigations in significantly nonsteady conditions and
hence, in contrast to existing thermal-testing methods using regular heating conditions, it is unnecessary to
wait some time after tube startup so as to ensure that the model is introduced into steady flow. The model
may be introduced into the working part of the tube earlier, and flow with a uniform field over practically the
whole of the characteristic rhomb of the nozzle may be used. As a result, a comparatively small working
part of the tube may provide a large value of Re, calculated over the length of the model, corresponding to
transient and turbulent states of the boundary layer.

In the present work, heat-transfer experiments were carried out in a supersonic (M = 5.0) aerodynamic
tube with an axisymmetric nozzle of diameter 0.29 m. The model (Fig. 1) was in the form of a tapering hollow
cylinder (length 1.15 m; diameter 0.04 m; wall thickness 0.002 m) of 1Kh18N9T stainless steel. To allow heat-
flux measurements at two cross sections of the model I, x = 0.3 m from the nozzle; II, x =1 m from the
nozzle), Chromel—Alumel thermocouples of thickness 0.0002 m were welded to the inside of the model wall.
The model was attached to a fixed mount in the tube. The tests were carried out for unsteady conditions of
tube operation, associated with tube startup and with transient processes due to temperature variations of the
incoming flow (between 300 and 500°K). The pressure in the tube antechamber was held constant (Poa = 8- 105
N/m? by means of an automatic choke. The gas-flow stagnation temperature was recorded using a thermo-
couple assembly in the tube antechamber. The thermal inertia of the thermocouple assembly was determined
experimentally and taken into account in the analysis of the test results by an appropriate correction in the
test-result processing program.

The test results were processed by numerical methods using an algorithm for the solution of the one-
dimensional linear inverse heat-conduction problem. In this case, the unsteady heat flux q(r) at the surface
of the model is determined by an integral Volterra equation of the first kind:

o= [ @K (v &,

where f(7) is a known function of the initial delta. For a plane plate with a heat-insulated inner wall and
constant initial temperature,

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 33, No. 6, pp. 988-992, December, 1977. Orig-
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